Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mycopathologia ; 189(1): 12, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38231359

RESUMEN

Basidiobolomycosis is an uncommon fungal infection caused by the genus Basidiobolus. In immunocompetent children, it usually causes cutaneous infection and rarely affects the gastrointestinal tract, and it is extremely rare for the disease to spread. The present study reports the first case of disseminated basidiobolomycosis caused by Basidiobolus omanensis in a child with acute lymphoblastic leukemia who died as a result of uncontrolled infection and multi-organ failure despite surgical and antifungal therapy with L-AMB and voriconazole. A review of the literature yielded 76 cases, including the current case with the majority of which were reported as invasive gastrointestinal infection. The median age was 4 years (61 male and 15 female) and the majority of these children were from the Middle East (80%), specifically Saudi Arabia (45%). Most patients were treated with systemic antifungal agents (mostly itraconazole and amphotericin B). Surgical intervention was done in 25% of these patients and the death rate was 12%.


Asunto(s)
Entomophthorales , Leucemia-Linfoma Linfoblástico de Células Precursoras , Cigomicosis , Niño , Humanos , Femenino , Masculino , Preescolar , Cigomicosis/diagnóstico , Cigomicosis/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/complicaciones , Itraconazol/uso terapéutico
2.
Curr Med Mycol ; 9(3): 16-22, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38361957

RESUMEN

Background and Purpose: Invasive fungal disease (IFD) is a common and serious consequence of leukemia in children and the incidence of these infections has increased due to chemotherapy. This study aimed to present the epidemiology of IFD in a cohort of children with leukemia from a tertiary reference institution in Oman. Materials and Methods: A retrospective study of IFDs in pediatric patients below 13 years of age with newly diagnosed or relapsed leukemia was conducted at the Royal Hospital in Muscat, Oman. From 2010 to 2017, IFD episodes in children with leukemia were evaluated retrospectively, considering age, gender, type of leukemia, chemotherapy regimen, IFD detection phase, neutropenia, prevention, diagnostic method, and treatment. Results: Between 2010 and 2017, 198 children with leukemia were admitted and treated at Royal Hospital. Invasive fungal infection (IFI) was diagnosed in 32 patients out of 198 (16.1%), and IFI was defined as probable and proven in 53% (n=17) and 47% (n=15) of the cases, respectively. At 1.1:1, the male-to-female ratio was roughly equal. According to chest computed tomography scans, 65.6% of patients had radiological features of fungal infections. Positive fungal cultures were found in the bronchoalveolar lavage of three patients, 37.5% of whom had positive blood cultures, and 3% had positive urine cultures as a neonatal invasive candidiasis. In three patients, invasive aspergillosis caused pulmonary IFD, accounting for 9.3% of all infection sites. Candidaemia was found in 28% of IFD patients, and the most common organism was Candida tropicalis (15.6%), followed by Candida parapsilosis (6.25%). Furthermore, the major risk factor was febrile neutropenia. Conclusion: In children with leukemia, invasive fungal infection is common and serious. Despite aggressive treatment, mortality among these high-risk patients remains high.

3.
Metabolites ; 12(10)2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36295808

RESUMEN

The current research was designed to explore the Blepharispermum hirtum Oliver (Asteraceae) stem and leaves essential oil (EO) composition extracted through hydro-distillation using gas chromatography-mass spectrometry (GC-MS) analysis for the first time. The EOs of the stem and leaves of B. hirtum were comparatively studied for the in vitro antidiabetic and anticancer potential using in vitro α-glucosidase and an MTT inhibition assay, respectively. In both of the tested samples, the same number of fifty-eight compounds were identified and contributed 93.88% and 89.07% of the total oil composition in the EOs of the stem and leaves of B. hirtum correspondingly. However, camphene was observed as a major compound (23.63%) in the stem EO, followed by ß-selinene (5.33%) and ß-elemene (4.66%) and laevo-ß-pinene (4.38%). While in the EO of the leaves, the dominant compound was found to be 24-norursa-3,12-diene (9.08%), followed by ß-eudesmol (7.81%), ß-selinene (7.26%), thunbergol (5.84%), and caryophyllene oxide (5.62%). Significant antidiabetic potential was observed with an IC50 of 2.10 ± 0.57 µg/mL by the stem compared to the EO of the leaves of B. hirtum, having an IC50 of 4.30 ± 1.56 µg/mL when equated with acarbose (IC50 = 377.71 ± 1.34 µg/mL). Furthermore, the EOs offered considerable cytotoxic capabilities for MDA-MB-231. However, the EO of the leaves presented an IC50 = 88.4 ± 0.5 µg/mL compared to the EO of the stem of B. hirtum against the triple-negative breast cancer (MDA-MB-231) cell lines with an IC50 = 123.6 ± 0.8 µg/mL. However, the EOs were also treated with the human breast epithelial (MCF-10A) cell line, and from the results, it has been concluded that these oils did not produce much harm to the normal cell lines. Hence, the present research proved that the EOs of B. hirtum might be used to cure diabetes mellitus and human breast cancer. Moreover, further studies are considered to be necessary to isolate the responsible bioactive constituents to devise drugs for the observed activities.

4.
J Fungi (Basel) ; 7(8)2021 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-34436192

RESUMEN

Human infectious fungal diseases are increasing, despite improved hygienic conditions. We present a case of gastrointestinal basidiobolomycosis (GIB) in a 20-year-old male with a history of progressively worsening abdominal pain. The causative agent was identified as a novel Basidiobolus species. Validation of its novelty was established by analysis of the partial ribosomal operon of two isolates from different organs. Phylogeny of ITS and LSU rRNA showed that these isolates belonged to the genus Basidiobolus, positioned closely to B. heterosporus and B. minor. Morphological and physiological data supported the identity of the species, which was named Basidiobolus omanensis, with CBS 146281 as the holotype. The strains showed high minimum inhibitory concentrations (MICs) to fluconazole (>64 µg/mL), itraconazole and voriconazole (>16 µg/mL), anidulafungin and micafungin (>16 µg/mL), but had a low MIC to amphotericin B (1 µg/mL). The pathogenic role of B. omanensis in gastrointestinal disease is discussed. We highlight the crucial role of molecular identification of these rarely encountered opportunistic fungi.

5.
Arch Microbiol ; 201(5): 591-601, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30714085

RESUMEN

Plant endophytes play vital role in plant growth promotion as well as in abiotic and biotic stress tolerance. They also mediate biotransformation of complex organic materials to simpler and useful by-product. Therefore, the role of plant endophyte in plant growth promotion and stress tolerance has gained considerable attention in recent days. Sphingomonas sp. LK11 is an important plant endophyte that actively regulates plant growth. However, the biotransformation and stress tolerance potential of Sphingomonas sp. LK11 was yet to be elucidated. Therefore, we studied the biotransformation of benzoin by Sphingomonas sp. LK11. We found that, Sphingomonans sp. LK11 biotransformed benzoin to benzamide. Further application of benzamide to Cucumis sativus led to decrease in agronomic potential of C. sativus as benzamide acts as an abiotic stress agent. However, the application of Sphingomonas sp. LK11 inoculums with benzamide reverted back the agronomic trait of the plants, suggesting the role of Sphingomonas sp. LK11 in biotransformation and abiotic stress tolerance in plants.


Asunto(s)
Benzamidas/metabolismo , Benzoína/metabolismo , Cucumis sativus/crecimiento & desarrollo , Sphingomonas/metabolismo , Estrés Fisiológico/fisiología , Biotransformación/fisiología , Endófitos/metabolismo , Desarrollo de la Planta , Reguladores del Crecimiento de las Plantas/metabolismo
6.
Front Microbiol ; 8: 1477, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28861045

RESUMEN

There is an ongoing hunt for biologically active compounds that can combat phytopathogenic fungi and improve plant growth without causing any hazards to the environment. Consequently the present study aims at deciphering the plant growth promotion and antifungal capability of Lysinibacillus sphaericus ZA9. The bacterium was previously isolated and identified in our laboratory from maize rhizosphere using 16S rRNA gene sequencing. The test bacterium L. sphaericus ZA9 was found to produce high quantity of IAA (697 µg/ mL); siderophores (195.79 µg/ mL), HCN and hydrolytic enzyme as compared to the reference strain Bacillus sphaericus Z2-7. The bacterium was also capable of solubilizing silicates (Si), phosphates (P), and potassium (K). The bacterium enhanced the seedling vigor and germination of seeds pretreated with it and promoted the shoot length of both cucumber and tomato seeds in greenhouse experiment. L. sphaericus ZA9 and its cell free culture supernatant showed varied antagonistic behavior against Alternaria alternata, Curvularia lunata, Aspergillus sp., Sclerotinia sp., Bipolaris spicifera, Trichophyton sp. Fermentation broth culture of L. sphaericus ZA9 was then used to isolate antifungal metabolites by silica column chromatography. Identification and determination of antifungal compounds was carried out by Thin-layer chromatography (TLC) followed by NMR spectroscopy. Two compounds were isolated and identified as 2-pentyl-4-quinolinecarboxylic acid (C15H17NO2) which is a quinoline alkaloid and 1- methylcyclohexene which is a cycloalkene. Compound 1; 2-Penthyl-4-quinolinecarboxylic acid was found to be highly antagonistic against most of the fungi tested as compared to the bacterium itself. Its activity was comparable to that of fungicide Benlate, while compound 2; 1- methylcyclohexene did not show any antifungal activity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...